DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection, Genome Biology

Por um escritor misterioso
Last updated 23 maio 2024
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we develop statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). For evaluation, we generate deep targeted NGS data of matching tumor and plasma DNA from 85 colorectal cancer patients. The DREAMS approach performs better than state-of-the-art methods for variant calling and cancer detection.
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
DREAMS: Deep Read-level Error Model for Sequencing data applied to
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
General illustration of our approach. (a) Distribution of observed
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Analytical validation of an error-corrected ultra-sensitive ctDNA
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Identification of 12 cancer types through genome deep learning
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Systematic evaluation of error rates and causes in short samples
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
White blood cell and cell-free DNA analyses for detection of
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
PDF) DREAMS: deep read-level error model for sequencing data
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
The changing face of circulating tumor DNA (ctDNA) profiling
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
PDF) Error Characterization and Statistical Modeling Improves
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Machine learning guided signal enrichment for ultrasensitive
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Systematic evaluation of error rates and causes in short samples
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Optimizing Cancer Genome Sequencing and Analysis - ScienceDirect

© 2014-2024 wiseorigincollege.com. All rights reserved.